A topological vector space that is not metrizable.

Question: Does there exist a topological vector space that is not metrizable?

Yes.

A typical example is C[0, 1], where [0, 1] is equipped the usual topology, and the topology on C[0, 1]is given by " $f_n \to f$ if and only if $f_n(x) \to f(x)$ for all $x \in X$ ". This topology is also called the "weak topology".

On C[0,1], use π to denote the "finest" (roughly speaking, with most open sets) topology that satisfies: if $f_n(x) \to f(x)$ in the sense of the normal topology on \mathbb{R} for all $x \in X$, then $f_n \to f$ in the sense of π .

Then $(C[0,1],\pi)$ is a topological space that is not metrizable.